وبلاگ > آموزش‌های رایگان > آموزش هوش مصنوعی > آموزش هوش مصنوعی در معماری > آموزش هوش مصنوعی Adobe Sensei | آموزش نصب و استفاده هوش مصنوعی Adobe Sensei

آنچه در این مطلب میخوانید:

آموزش هوش مصنوعی Adobe Sensei | آموزش نصب و استفاده هوش مصنوعی Adobe Sensei

آموزش هوش مصنوعی ادوب سنسی | آموزش نصب و استفاده هوش مصنوعی ادوب سنسی

Adobe Sensei مجموعه‌ای از ابزارهای هوش مصنوعی و یادگیری ماشینی بوده که در برنامه‌های مختلف Adobe مانند Photoshop، Illustrator، InDesign و Experience Cloud ادغام شده است. این ابزارها می‌توانند به طور خودکار وظایفی مانند ویرایش عکس، ایجاد گرافیک، چیدمان صفحه و طراحی رابط کاربری را انجام دهند و به شما کمک کنند تا در زمان خود صرفه‌جویی کنید و کارهای خود را کارآمدتر انجام دهید.آموزش هوش مصنوعی Adobe Sensei | آموزش نصب و استفاده هوش مصنوعی Adobe Sensei

کاربرد ادوب سنسی در معماری چیست؟

Adobe Sensei می‌تواند به معماران در موارد زیر کمک کند:

  • ایجاد طرح‌های مفهومی: Sensei می‌تواند با استفاده از متن یا تصاویر، طرح‌های مفهومی خلاقانه و باکیفیتی را به سرعت و به آسانی ایجاد کند.
  • بهبود کیفیت طرح‌ها: Sensei می‌تواند با تجزیه و تحلیل طرح‌ها و ارائه پیشنهادات و راهنمایی‌های هوشمندانه، به معماران کمک کرده تا کیفیت طرح‌های خود را ارتقا دهند.
  • ایجاد تصاویر واقعی: Sensei می‌تواند با استفاده از هوش مصنوعی، تصاویر واقعی از طرح‌های سه‌بعدی ایجاد کند و به معماران کمک کند تا ایده‌های خود را به طور واضح‌تر به مشتریان خود ارائه دهند.
  • بهبود فرآیند طراحی: Sensei می‌تواند با خودکارسازی وظایف تکراری و وقت‌گیر، به معماران کمک کند تا فرآیند طراحی خود را کارآمدتر کنند.
  • طراحی پایدار: Sensei می‌تواند با تجزیه و تحلیل داده‌های مربوط به سایت و شرایط محیطی، به معماران کمک کند تا طرح‌هایی پایدارتر و سازگار با محیط زیست طراحی کنند.

مزایا استفاده از ادوب سنسی در معماری چیست؟

  • افزایش سرعت و کارایی: Sensei می‌تواند وظایف تکراری و وقت‌گیر را به طور خودکار انجام دهد و به معماران زمان بیشتری برای تمرکز بر روی کارهای خلاقانه خود بدهد.
  • بهبود کیفیت طرح: Sensei می‌تواند با تجزیه و تحلیل طرح‌ها و ارائه پیشنهادات و راهنمایی‌های هوشمندانه، به معماران کمک کند تا کیفیت طرح‌های خود را ارتقا دهند.
  • کاهش هزینه‌ها: Sensei می‌تواند با خودکارسازی وظایف و بهبود فرآیند طراحی، به معماران کمک کند تا هزینه‌های خود را کاهش دهند.
  • افزایش رضایت مشتری: Sensei می‌تواند با ارائه تصاویر واقعی از طرح‌ها و کمک به معماران در ارائه ایده‌های خود به طور واضح‌تر، به افزایش رضایت مشتریان کمک کند.

چارچوب یادگیری ماشین ادوب سنسی چگونست؟

ما در بسیاری از شرکت های مختلف شاهد روند افزایش سیستم عامل های داخلی هوش مصنوعی هستیم: Uber سیستم میکل آنژ ( Michelangelo ) را دارد ، Facebook سیستم FBLearn و Adobe سیستم Adobe Sensei را دارا می باشد. ظهور این پلتفرم ها به دلیل نیاز های خاص شرکت ها است. این نیاز ها توسط سیستم عامل های عمومی قابل تحقق نمی باشد ، و سخت گیری و گردش کار لازم برای حفظ مقیاس برای هر شرکت خواستار یک چارچوب یادگیری ماشین داخلی است.

Adobe نیاز های مقیاس بندی بسیار منحصر به فردی دارد. همراه با حجم زیاد کاربران و دارایی های آن ها ، مقیاس در ابعاد مختلف گسترش می یابد:

  • طیف وسیعی از انواع محتوا فقط به تصاویر و فیلم ها محدود نمی شود ، بلکه مجموعه ای از انواع مختلف محتوا مانند PDF ، PSD  ، AE و غیره را شامل می شود.
  • مجموعه محصولات Adobe در طیف گسترده ای از دستگاه های کاربران پشتیبانی می شود و پشتیبانی از یادگیری ماشین در انواع مختلف سخت افزار با همان انتظارات، چالش های خاص خود را ایجاد می کند. چگونه یک الگوریتم را به طور مؤثر بر روی یک CPU اجرا می کنید وقتی که برای یک GPU با پردازش بالا آموزش داده شده است؟
  • محصولات Adobe مجموعه متنوعی از کاربران را دارند. ساختن ویژگی هایی که در مقیاس کاربران از افراد تازه کار گرفته تا متخصصان ابزار هایی مانند فتوشاپ انجام می شود کار آسانی نیست. این امر مستلزم آن است که از یک منظر دیگر به یادگیری ماشین نگاه کنید. هوش مصنوعی شما با تغییر کاربر در یک دوره زمانی تغییر می کند.
  • با توجه به تعهد ما به نوآوری ، ما سطح تحقیقات را پیش برده و باید اطمینان حاصل کنیم که همیشه با جدید ترین زیر ساخت ها کار می کنیم. ما هرگز نمی خواهیم خود را به یک فناوری محدود کنیم. کار با چندین فن آوری مختلف به طور همزمان و جمع کردن آن ها به عنوان یک واحد ، چالش های خاص خود را دارد.

سه ستون چارچوب یادگیری ماشین ادوب سنسی چیست؟

با توجه به نیازهای خاص شرکت Adobe ، تصمیم به ایجاد یک پلتفرم یادگیری ماشین را در وظایق مختلف را در مقیاس های مختلف پشتیبانی و حل می کند گرفتند. آن ها یک چارچوب سه بخشی برای انجام این کار ایجاد کردند که ستون های آن برای حل مسائل یکی پس از دیگری در کنار هم کار می کنند. سه ستون این چارچوب عبارتند از:

* چارچوب آموزش Sensei

* چارچوب استنتاج و پردازش محتوا Sensei

*  چارچوب روی دستگاه Sensei

نگاهی عمیق تر به چارچوب ادوب سنسی:

هدف از چارچوب آموزشی این است که محققانی که روی هوش مصنوعی و یادگیری ماشین کار می کنند ، در حداقل زمان شروع به کار کنند و در عین حال به آن ها انعطاف پذیری دهند تا از ابزار هایی که در این حوزه ها استفاده می شود ، استفاده کنند. این چارچوب ، SDK ها و قالب های مورد استفاده برای کلیه چارچوب های محبوب یادگیری ماشین مانند Tensorflow ، Pytorch و غیره را به محققان ارائه می دهد تا بتوانند بلافاصله بدون نگرانی در مورد تنظیم محیط ، کار را سریعاً شروع کنند. این محققان با انتخاب چارچوب و نوع محاسبات مورد نیاز خود، شروع می کنند و چارچوب آموزش آن را در یک لحظه برای آن ها فراهم می کند.

پس از آماده شدن محیط ، اولین قدم بزرگ برای حل هر مساله یادگیری ماشین، داده ها است. بیشتر وقت برای گرفتن داده ها به شکلی که بتوان با آن ها آموزش را انجام داد، صرف می شود. این چارچوب، مجموعه داده های معمول را به صورتی به محققان ارائه می دهد که مجبور نیستند وقت خود را صرف ایجاد آن ها از ابتدا کنند. همچنین این چارچوب، جریان کاری ای ارائه می دهد که مجموعه داده های جدیدی را بدست آورده و عملیات های شفاف سازی توزیع شده را برای پردازش و تمیز کردن داده ها اجرا می کند.

جنبه دیگر این چارچوب مدل سازی، حول انجام آزمایش ها برای آموزش یک مدل است. حمایت کامل از سازمان تحقیقاتی Adobe ، که صد ها آزمایش آموزشی را همزمان انجام می دهد ، کار آسانی نیست. در کنار هزینه دستگاه های GPU ، آن ها نیاز به ایجاد یک چارچوب آموزشی دارند که به محققان این امکان را بدهد که آزمایشات خود را ردیابی و تکثیر کنند ، بدون اینکه نگرانی در مورد تغییراتی که بین آزمایش ایجاد می شود ، داشته باشند. آن ها گردش های کاری ای ایجاد کردند که اطلاعات مربوط به آزمایشات را ذخیره می کند و به محققان کمک می کند تا نتایج آزمایش های مختلف را با یکدیگر مقایسه کنند. این کار با کپی کردن تمام اطلاعات مربوط به آزمایش در یک موجودیت به نام ” موتور ” انجام می شود.

با نگاه به آینده ، آن ها در حال توسعه ابزار های ارزیابی و تجسم استاندارد تر هستند تا محققان بتوانند روش های متداول ارزیابی مدل ها را پیدا کنند. آن ها همچنین به دنبال فناوری های نوظهور مانند AutoML برای تنظیم هایپرپارامتر و انتخاب معماری شبکه عصبی هستند.آموزش هوش مصنوعی Adobe Sensei | آموزش نصب و استفاده هوش مصنوعی Adobe Sensei

چارچوب استنتاج و پردازش محتوا : مقابله با چالش های مقیاس پذیری منحصر به فرد

هنگامی که یک مدل آموزش دید ، آماده استقرار است. با این وجود ، بکارگیری الگویی برای ادغام محصول چالش های زیادی دارد – لازم است که به طور صحیح اندازه گیری شود ، تمام جزئیات محیط باید در تولید تکرار شود ، و نظارت و هشدار مناسب باید وجود داشته باشد. همه این چالش ها منجر به زمان انتقال فناوری طولانی بین زمان آماده شدن مدل و زمانی که بخشی از محصول می شود می شوند.

برای فریمورک یادگیری ماشین Adobe Sensei ، زیرساختی مبتنی بر فضای ابری ایجاد کردند که می تواند در صورت لزوم مقیاس آن کم یا زیاد شود. همچنین امکاناتی را برای پیکربندی کنترل های دسترسی مناسب ، سیاست های محدود کننده نرخ و موارد دیگر فراهم می کند. این کار با گسترش “موتور” برای داشتن یک پرونده مشخصات خدمات ، تولید شده توسط چارچوب و بر اساس گزینه های شما انجام می شود. این امر به استقرار مدل در حالت های آنلاین و آفلاین تنها با چند کلیک کمک می کند.

در کنار این ، موتور ها به گونه ای تنظیم شده اند که می توان آن ها را برای ساختن گردش کار و خدمات پیچیده تر به یک دیگر پیوند داد. این کار به ایجاد یک زبان خاص برای انجام این اتصال نیاز داشت. آن ها فهمیدند که مدل های یادگیری ماشین به طور جداگانه کار نمی کنند. آنچه نیاز داشتند ، پردازش محتوای خالص بسیار زیاد در همان زیرساخت هایی بود که می توان در کنار هم پیوند داده شود. این منجر به توسعه قابلیت های بیشتر در چارچوب برای پشتیبانی از پخش و سناریو های پیچیده ورودی و خروجی شد.

یکی دیگر از نیازهای اساسی که با آماده شدن یک مدل جدید ظاهر می شود ، امکان فهرست بندی دارایی های (طرح ها و ابزار ها) موجود است. میلیارد ها دارایی وجود دارد که باید هر بار که یک آنالیزور جدید وارد شود مجدداً فهرست بندی شوند. برای بهینه سازی منابع بدون تأثیرگذاری در پایپ لاین زمان واقعی ، آن ها نیاز به یک پایپ لاین استنباط دسته ای داشتند. برای حل این مشکل ، آن ها بهینه سازی را در سطوح مختلف انجام دادند ، از شروع بارگیری و ذخیره دارایی ها به حافظه و بهینه سازی های RAM تا فهرست بندی موفقیت آمیز ۱۰۰ میلیون دارایی در کمتر از یک روز. شکل زیر معماری پایپ لاین فعلی را نشان می دهد.


آموزش هوش مصنوعی Adobe Sensei | آموزش نصب و استفاده هوش مصنوعی Adobe Sensei

ایجاد یک چارچوب روی دستگاه برای یادگیری ماشین

سومین ستون اصلی چارچوب ، چارچوب روی دستگاه( On-Device ) است. یکی از بزرگترین چالش های Adobe و مجموعه محصولات آن ، پشتیبانی از انواع سخت افزار های مختلفی است که کاربران در سراسر جهان از آن استفاده می کنند. با توجه به نگرانی های مربوط به حریم خصوصی داده ها و الزامات تأخیر ، نیاز به پیاده سازی یادگیری ماشین در دستگاه ها ، یک جنبه بسیار مهم مقیاس گذاری یادگیری ماشین برای Adobe است.

از آنجا که در حال حاضر صد ها مدل مستقر در ابر وجود دارد ، از ابتدا شروع کردن و ساختن مدل های جدیدِ روی دستگاه، امکان پذیر نیست. آن ها به راه حلی نیاز داشتند که این ویژگی ها را به سرعت در دسترس دستگاه قرار دهد. آن ها شاهد نوآوری هایی در زمینه ی این صنعت بودند و می خواستند راه حلی ارائه دهند که از بهترین ذخایر استفاده می کند ، ضمن این که استرسی که توسعه دهندگان برنامه برای درک جزئیات خاص این ذخایر با آن روبرو هستند، را از بین می برد. برای تحقق این هدف ، آن ها نسخه ای از SDK که روی دستگاه اجرا می شود ، را ایجاد کردند تا ضمن نگه داشتن همان API در دستگاه ها ، بهترین چارچوب را برای دستگاه ارائه کنند. بر اساس نوع دستگاه ، به طور خودکار چارچوب بهینه شده انتخاب می شود.

آن ها همچنین در تلاش هستند تا پایپ لاین های تبدیل و فشرده سازی را بهبود ببخشند – این کار تبدیل مدل ها برای Runtime های خاص دستگاه با بهترین عملکرد و دقت را خودکار می کند. یادگیری همبسته ( Federated Learning ) همچنین موضوع تحقیق مهمی است که نتایج خوبی را به ارمغان آورده و به زودی بخشی از چارچوب خواهند شد.آموزش هوش مصنوعی Adobe Sensei | آموزش نصب و استفاده هوش مصنوعی Adobe Sensei

چارچوب محتوا ادوب سنسی: تسریع در نوآوری هوش مصنوعی

Adobe Sensei  یک سیستم پیچیده توزیع شده در مقیاس بزرگ است. در کنار دانشمندان داده ، مهندسین یادگیری ماشین ، کارشناسان سیستم توزیع شده ، مهندسین دستگاه و کارشناسان مهندسی نرم افزار ، مدیران عالی محصولات و مدیران برنامه نیز برای تحقق این امر درگیر بوده اند. سرمایه گذاری آن ها در ساخت چارچوب یادگیری ماشین Sensei نشان می دهد که Adobe چگونه در حال تسریع نوآوری های هوش مصنوعی در سراسر شرکت است. این چارچوب به نیاز های منحصر به فرد تلاش های آن ها برای دستیابی به نوآوری هوش مصنوعی در مقیاس می پردازد. این امر باعث می شود تا تیم های داخلی Adobe بتوانند ویژگی های هوش مصنوعی و یادگیری ماشین را توسعه دهند و بهترین تجربه را به مشتریان ارائه کنند.

نحوه استفاده از ادوب سنسی در معماری چه گونه است؟

نحوه استفاده از Sensei در هر برنامه Adobe متفاوت است. با این حال، به طور کلی می‌توانید Sensei را با استفاده از موارد زیر پیدا کنید:

  • منوی Sensei: در برخی از برنامه‌ها، Sensei به عنوان یک منوی جداگانه در دسترس است.
  • پانل Sensei: در برخی از برنامه‌ها، Sensei به عنوان یک پانل جداگانه در رابط کاربری در دسترس است.
  • گزینه‌های Sensei: در برخی از برنامه‌ها، گزینه‌های Sensei در تنظیمات برنامه یا در منوی‌های مختلف پراکنده شده‌اند.

اگر هنوز بلد نیستی از هوش مصنوعی در قالب معماری کار کنی هر چه سریع تر به این لینک برو و باد بگیر.

1نظرات

دیدگاهتان را بنویسید

Your email address will not be published. Required fields are marked *